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137ABSTRACT

"Pseudo state measurements' are constructed to make the measurement
(geometry) model linear 1n the state. In the past, linear measurements have
often proved to give better state estimates than nonlinear measurements.
They are nonlinear functions of the actual measurement model bias parame-
ters and are constructed to be linear functions of the state variables or to
vanish in the absence of model or measurement error. Some examples of
constructing pseudo state measurements are given in the paper. Recursive
filter equations are derived using the pseudo state measurements and includ-
ing colored (Markov) measurement noise and unestimated state and measure-
ment model parameters., The filter estimates minimize the usual weighted
least squares cost function with correlated state and pseudo state measure-
ments. The filter is linear by construction., Higher order partial derivatives,

if retained, would appear only in the computation of error variance and covari-
ance matrices.
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FOREWORD

This report is published by The Aerospace Corporation, El Segundo,
California, under Air Force Contract No. F04701-72-C-0073.

This report, which documents rescarch carried out from July 1972
through January 1973, was submitted for review and approval on 30 May 1973
to Capt, Edward F. Stafford, SAMSO/DYGM.

Approved by

/ W//é/\

/ J. R. Allder, Director
Guidance and Flight Dynamics Subdivision
Guidance and Control Division
Engineering Science Operations

Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is pulrlished only for the exchange and

stimulation of ideas.

Bluond 7 LA

EDWARD F. STAFFORY, Capt, USAF
Project Officer, Missile Guidance &
Technology Div, Guidance Directorate
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- ABSTRACT

s "Pscuda state measurements’ are constructed to make the

‘ measurement (geomebry) maodel linear in the state. In the past, linear
measurements have often proved to give better state estimates than non-
o lincar measurementis. They are nonlinear functions of the actual measure-
; ment model bias parameters and are constructed to be linear functions of

5 the state variables or to vanish in the absence of model or measurement

n error. Some examples of constructing pseudo state measurements are
given in the paper. Recursive filter equations are derived usiag the pseudo
o state measurements and including colored (Markov) measurement noise

and unestimated state and mecasurement model parameters. The filter esti-
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SECTION I

INTRODUCTION : i
o

Nonlinear p'roblem geometries often assume that the measurements
are related to the state using the nonlinear relation Zn = hn(Xn) + Nn' With g
this nonlinear form of the measurement model employed, the current optimal

estimate can only approximately be represented as a linear combination of

Lt

the measurements. The usual procedure is either to iterate the solution
until acceptable accuracy is obtained or simply to ignore the partial deriva-
tives of hn(Xn) that are higher than the first (Ref. 1). In this latter case,

a direct computation of the errors caused by the omission of the second

. derivatives in some applications exceeds the measurement noise by an

\ .
ekt i S hd:

order of magnitude. Hence a serious convergence problem may arise with
. this formulation. Techniques for using the measurement m¢ "¢l second .

derivatives are given in Ref. 2.

A new approach to nonlinear filtering with correlated measurement
noise is prescnted in this paper. This approach, using pseudo state mea-
surements, differs from the usual approach of the "extended Kalman' filter.
The latter approach requires the computation of nonlinear residuals and
uses nonlinear propagation of the state. The approach defined in this paper K
uses a nonlinear transformation of the actual measurements and the a priori

state variables to obtain pseudo state measurements. The analysis in this

paper is general in that all such functions are permitted, including functions - |
that vanish in the noise-free case. The principal advantage results when the o3
pscudo state mcasurements are constructed to be linear functions of the :
stale variables. '
All nonlinecarity in the measurement model is restricted to the
computation of the covariance and variance error matrices. These non-

linearities are unavoidable and do not appear to be a source of concern.

IR ATV

5
—
1
S
il

. R




-

The usual weighted least squares cost function of correlated

residuals is adopted as the cost function to be minimized. The use of pseudo
g state measurements has been tested to a limited extent by the author, using
‘ - both simulated and actual data with good results.

The derivation using pseudo state measurements in this paper
includes the derivation in Ref. 3 as a special case. The equations (see
Appendix A) degenerate to the usual Kalman f{ilter by setting S, o, &, V,

D, G, L, o, and B to zero and ¥ to L. i
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SECTION II

Lty et L

, EXAMPLES OF PSEUDO STATE MEASUREMENTS s

Pseudo state measurements C,n are constructed as nonlinear functions

of the actual measuremants Z, and the a priori state estimate -}En as C,n = ‘ °

Ln(Zn, fn). It is convenient to construct pseudo state measurements to be . 3

linear functions of the state variables £n_(Xn). The pseudo state residuals )

are thenAr_ =0 (Z , X ) - 2. (X ), where £ {X_ ) =% X _are linear func- Tl
n n'“n’ 'n n''n n ' n n'n

tions of the state variables by construction. .

"y

Several examples will be given to illustrate the construction of f

pseudo state measurements. Consider that th. state variables include Xi’ ?}

’ X, X3 Xyy X5, and X,..., . It is possible th~t three simultaneous
% position measurements can be made such that Xi’ XZ’ and X3 can be cal- -

culated from thc three measurements. Examples of this include trilatera-
tion, where three simultaneous range measurements are made from three
different stations. (In this context a station may denote either a ground sta- 5

tion, a ship, or a satellite whose coordinates are known approximately. )

Other examples can be constructed wherein exactly three position measure-

ments involving range, angle, and/or direction cosines, etc., are mea- ©
sured from which Xl’ XZ’ and X3 can be calculated in the ideal (error-free)

case (Refs. 4 and 5). B
A simple example occurs when range, azimuth, and elevation o é

angles R, A, E are measured from a station. Then K
43
§,1=RcosAcosE (.21=X1) ;
§2=RsinAcosE (£2=X2) =

-§3=RsinE (£3=X3)

arc pscudo state measurements since these are nonlinear functions of the

b
I

L.
k<
23
Fy
p~
]

actual mcasurements. This is a special case since a priori state variables

|
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were not required in the construction. In general, it is not possible to find
a nonlinear transformation of the measurements that will be linear functions
of the state variables. Consider the case where two angle measurements

are made from a single station. Then the pseudo state measurements (BESMs)
become

§1=§cosAccsE (£, =X,)
- éz = R sin A cos ’E (22 = XZ)
{; =R sin E (45 = X,)
= _ 3l , w2, w2 d/2. , . c s
where R = (X1 + XZ + X3) is constructed using the a priori state vector.

If E, A are mecasured at several stations, then the same procedure may be
followed for each station. This procedure extends the use oflthe a priori
data to the measurement model. It may be preferable in this example to
omit éz or §,3 since there are only two measurements. The use of only two
PSMs may avoid some matrix inversion problems in the gain computation.

An alternate construction of the PSM for angle only tracking data is as

follows:

Li=-5§'1~ sinA-f"i'i'2 cos A (!1=0)
42 ='}_(’1 sin E cos A
+ X2 sin E sin A - X3 cos E (22 = 0)

This technique has the further advantage that 8?;/8'}_{i are independent of -}-{'i.
In the case where R is measured at one or more stations, it is only
ncecessary to construct £, A from the a priori data in order to obtain (,1, Y’Z"
and §3 (or any onc of the three). A similar procedure can be constructed
for velocity, acceleration, and attitude measurements obtained in the sensor

coordinate system. These measurements may be linearly related to the
state vector.
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For example, when the measurements are R, E, and A, then the

pscudo state velocity measurements may be constructed as

T LR E ARE R (2, = X)) (i=1,2,3

where R, E, and & are calculated from X, ¥, and Z. In a similar fashion,
vehicle measurements of acceleration and attitude rate may be linearly

related to the sfate vector.

e TR R AT ORAR T N Gy T T e T AT A ST T T e
‘ - [ A

« ~ . . ) N
- S A O . - 9 AR EHRIFEI A SN ET LI NS

Py

S R SR

Wi S g

o AW e e AR

N
i

i

o e

g g, Bantas

"

‘

S A

PEIGETI IR

oy




T T e T = — Gae T = -
- — T 1

e e e m Trn T - *
e A T T L - A e ST o= JO RS

SECTION IMI

FILTER COMPARISON

The pseudo state measurement filter (PSM) can be compared with
the extended Kalman filter (EKF) in the following special case involving

white measurement noise and n. unestimated parameters.
given below:

The result is

EXKE

-1
- ¢ /T 7 (;T
Ky = Mnln(Rn +’ZnMn"{n)

P,={I-K, %)M,
X =X +K [L -2.(X)]

PSM

=
1

. o\T ey Ly=1
n = M(Z, -) [fganig’g‘+ (‘Qn - HIM (2L - "?’:1) ]

P

[}

L == K (€ - M,

Xn g Xn + I\n( C,n - !éan)

where M ¢ P ¢T + Q_ and X_are evaluated using the nonlinear formu-
n n n-{'n n n

lation. The balance of the symbols are defined in Appendix A. Note that no
errors are introduced in the PSM formulation as a result of neglecting
sceond-order partial dervivatives of fn(Xn). In one of the examples of
PSMs, it follows that both .f/.’n and .7{1’1 are constants. The EKF formula-

tion sulfers from the fact that ’/’n are not constants.
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APPENDIX A
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SUMMARY

}
e b e

o
e aNoue

o .

The filtering concept may be explained with reference to the block

13

'
AT TR

EEVARIN

diagram (Fig. A-1), which shows seven computational blocks denoted as:

Block 1. State propagation

Block 2. Psecudo measurements

Block 3. Set up computations

Block 4. Cost function

Block 5. Gain and covariance computation
Block 6. Step initialization

Block 7. Filter performance evaluation

The previous best estimate of the state vector is propagated in
Block 1 to the time t when the measurements are made. Pseudo state mea-
surements and pseudo state residuals are calculated in Block 2. The gain
matrix Kn is computed recursively in Block 5. The gain matrix scales the
pseudo state measurement residuals to obtain the improvement increment !
to be added to fn‘ The error covariance matrix of the estimate is also

computed in Block 5.

The computation of the gain matrix requires that matrices M, R,
Z, and C be computed. This is performed in set up (Block 3).
Block 6, step initializatiun, is included so that the required input

matrices to Block 5 (G, V, and L) may be computed recursively.

«
PSS ET bl

Blocks 4 and 7 are included so that the filter performance, includ-

S rac

ing dynamics and measurement modeling, may be evaluated. Note that
inclusion of these blocks is not required for the recursive filter operation.
These may be included when the computational capability permits and when

there is some question as to the adequacy of the modeling process.
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Block 3 Equations

- T
‘Vn (g)n Gn_z p

‘ln s ¢*.1Ln-i

=
'

n ° r’Rrx lpT tqqf
. T T | T
Mn N n n- ld’ +¢V '0 'iimvn-iilb
+ PSPT 4 Q.
n = -,;yr’]M - :‘gnwg-" - é“nYT
n '.G'an”’T e me + @ WTﬁ’;r FAHLW "’T
ow? NN ’ T 'T T
LA . £ g .
/{nMn”n {'/{’nxn({n * ((n“n‘yln

Block 5 Equations

Kn = (Cq + Mg#E) - (2q + 50T + ¢ T

+ ngnfl’;f ) -
Kp = Xy + Ky {1, - 2K )]

Pp=(I-Ky4) M, - K.C

Block 6 Equations

Fp=l+ K - K, %,

Gp = FaWyh + K 9,R,
vV = F ¢ \Y% + F S
n‘n n-1 n

Ly = FuY, + K,&,B

Block 7 Equations

N T
Yn(xn)] An“’n B fn(xn)] * 2[gn ) fn(xn)] Jn(Xn

n

-
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APPENDIX B

DERIVATION

-

The filter equations will be derived with reference to Fig. A-1.

The equations for each of the blocks w4+ %e derived.

B. 1 Block i - State Propagation

The dyna.nics of the state vector propagation are given by the non-

linear vector function
X =0X P+ U, (1-1)

It is assumed that the best estimates in-i and P are available such that

X =¢X 4 p) (1-2)
B.2 Block 2 - Pseudo State Measurements
Let Zn cenote the actual measurements = Zn - Nn' These mea -

surements can be correlated as a first-order Markov process as

(2-1)

The development in this report can be extended to the nth

-order Markov
process. Pscudo state measurements are now constructed as nonlinear
functions of the actual measurements and the a prieri state estimate in'
The pscudo state measurements then become linear functions of the state

variables; i. c.

. ¢ =6z X, T) (2-2)

N
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gt

denotes the pseudo state measurements. These are constructed to be exactly
linear functions of the state variables except for the errors Agn that result
from the measurement noise Nn’ the state error estimate ?En, and the mea-

surement model errors T. Hence, in the equation
= - -3
én zn(Xn) Agn (2-3}

£ denotes a linear function of the state variables. In practice, an attempt

is made for £ to be identical with one oxr more of the state vector compo-

nents. Pscudo state measurement residuals are then obtained (Fig. A-1)

38 L, - fn(in)'

B.3 Block 3 - Set Up

The computation of the cost function requiresvthat Mn’ Rn’ Zn, and
C_n be calcuiated. This is accomplished by using the inputs to Block 3 shown
in Fig. A-1.

The computation of R using Eq. (2-1), is obtained as

_ T
R =N, N

} T T, ,4T.T
= (PN, +a W ) (N pt+ W q'))

(3-1)
T T T T
N, e +alW_W D>q

= l:’<Nn- i

T

T
hoi P tag

:pR

TS .
where (Wn WD =L

The computation of Mn requires the evaluation of ,}\,{n’ which results from

Eqgs. (1-1) and (1-2) as
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= ¢(Xn-1, p) + Un - ‘:”(Xn_.ly _ﬁ)
(3-2)
+

- = ‘P(Xn-

t

e
n-1’

p+p)+Un-‘P(Xn_1, P)

e — -—
Ay =t (2, X, T)-¢ (2, X, T

= (,n(Zn + Nn’ Xn + Xn’ T+ T)-~ {,n(Zn, Xn, T)

=':bn en-1+@np+ Un
b
=4 whnrre the expansion terms higher than the first degree were ignored.
] z,;; The computation of En and Cn require the evaluation of A(,n, as
] 5“ defined in Eq. (2-3). Using Eq. (2-2), it follows that
2 ’
‘

(3-3)

: The result of expanding the first term in a Taylor's series and retaining
) only the linear terms is

{4 ROK 3 s > ’ A
v Coan o ™, . e e xt
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A{,n=

2 N +# X +& T
n n n n n

where the partial derivatives are defined as

Aty
n 8Zn Z

H

2
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(3-4)
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In the computation of Mn’ Eq. (3-2) is used as

- ~ ~T

Mn ;(Xan)
) -~ T ,T,~T,T, T
-<(¢nen_i+9p+Un)(en_1¢n+p D +Un)>

(3-5)
T

n-

. T T, ., T
= 4>n Pn_1 ¢n + ¢n Vn_1 &+ DV

g ¢

+ @D +Q_

In the computation of Cn, Eqs. (3-2) and (3-4) are used as

= - ST oy 3T S
= -9, N, Xn> /"’;1<Xn X2 - gn<"' Xn>

but from Eqs. (3-2) and (2-1), it follows that

— s IS e T T T
W =X ND>=L{d e (+PP+UNIN__, o7 +W_ qT)

(3-6)

=6 e NI

T _ T
n-1 n-l>p -(bnG 1 P

ne
v =X FH =6 L (3-7)
n~ NMn n n-1i

Hence

n 7, Mn n n n n (3-8)

where it is assumed that

0= FND = FTH = A ND
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The computation of En is obtained by using Egs. (3-4), (3-2), and (2-1) as
. N
= T 3
Z,=<a bn 85, E
) ) wr ¥ sy T 0T o %T T =T T :
—(((f}n Nn+.)€;’1 X+ é’n T) (Nn 9. +Xn"7fn + T é“n)) i
(3-9)
i T, T T T 3
- A B724
_(gn R, @11+(gn Nn‘ﬂn +'7(;1Wn Qn'}"%xzanwn E
o T T T T g
rHY s+ &Y .;f’n t& B & S
.B. 4 Block 4 - The Cost Function e ?
The cost function is constructed to minimize the correlated wrighted 3
"east squares of the sum vector, consisting of the pseudo state measurement 2
~esiduals and the a priori state residuals, as ;

L, = 1,(X)
X -X

n n

i.e., the two vectors are joined to form a single vector consisting of the

ordered sum of all components. The cost function then becomes

A, = (gn - /Zn(Xn))T An(t_,n ; zn(xn)) + z(gn —ax N\ ax - R )

n’} n
- T — (4-1)
X, - X)) D(X - Xy
where the quantities A, J, and D are defined as 3
~ \~-1
A J z C
. n n n n
= (4-2)
. it op ct ™
n n n n
B-5
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3 § and
= e, - 2,0%0) (8, - 4,050) = <ot agD>
5 ‘n~ n n'“'n n n''n n= °n
3 :
T Cn= <((’h B ln(xn)) (X, - X0 = -at, X2
B
E . - 3 T I\ _ 5 9T
i M, = <(Xn - Xy (Xn B Xn) > = <Xn Xn>
s are each calculated in Rlock 3. Note that if Al;n «nd Xn - in are Gaussian,
3 .
L the cost function becomes the conditional mean and the estimate is considered
¢ } optimal in the usually accepted sense. However, these residuals need not be
3 } Gaussian for the purposes of this report. The ccst function is then simply
5 the weighted least squares cost function. Note also that this formulation of
k the cost function is such that, given Gaussian variables, the distribution
function of the cost function is chi-square with n, tn, degrees of freedom and
,: that thesc data could be transformed to orthogonal variables. If this were
4 N done, each item in the sum of squares would be weighted inversely as its
variance.
e
;\ Expressions for An’ Dn’ and Jr will be calculated. Multiplying
. § both sides of Eq. (4-2) together and equating to the identity matrix results
;‘ in the following equations
F | TA+CIT =1
k. ZJ+CDh=C
A T
C A+ MD =1

_ cTarmit -0

where the n subscripts have been omitted for ease in typing. The result of

E solving for A, D, and J is

1 1 T

yxtepeT pt

a=[z-cMm'c % o (4-4)
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p=(M-cTztcrt = AGM™ (4-5)

and

¥
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A S by it
.
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«

Az-emicTitom?t
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(4-6)

- " -z teiv-cTztgr!?

There are two solution forms for each expression because of the redundancy
of Eqs. (4-3) (4 equations with only 3 unknowns). The user should choose

the combination that provides the simplest computer program.

; i B.5 Block 5 - The Gain Computation

! Boo The optimal estimate is the one that minimizes the cost function
e 7 obtained in Eq. (4-1). This estimate results from taking the gradient of
N Eq. (4-1)

- zn(xn)) +2 J;f (gn - zn(xn))

_n__,gT
=-22 An({,n

24T I (X -XV+2D(X. -%) (5-1)
nn n n n n n

1)
o
5
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o
>4
n
>y

e E el s e e Ui

The result of solving Eq. {5-1) for in is

Py > N M
AN

ot A s SIS

T 6 = T T .
(D, -£X 1 )(X - )=(&Xa_-1]) (c,n - zn(xn)) (5-2)

LR Fomudian 3

. Lo
T Now, since JZn(Xn) is a linear function, it may be written as

1 X)) = zn('}'in) +& (X - X ) (5-3)
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and then Eq. (5-2) may be written as
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in = Sc'n + Kn["gn - £ (X )] (5-4)

where "
_ Tar g -T2 T3 1 %A - 1T ] '
kK =[p +2 A & -3 2 -2 31 [¢ A -7] (5-5)
5 Note that the gain matrix K  consists only of constants, i.e., K, is inde-
. pendent of the state and measurement residuals.
i The gain computed in Eq. {5-5) gives an estimate in that minimizes

the weighted least squares cost function of Eq. (4-1). It will now be shown

i that the same gain Kn also minimizes each of the diagonal elements of the
. error covariance matrix Pn. This assumes that the minimum variance esti-
ks mate is a linear function of the pseudo state measurement residuals; i. e.,

assume that
. f; X =X +J[n[§n - ,en(xn)] (5-6) -

Then the estimation error is obtained by adding and subtracting Xn from
both sides of Eq. (5-6) to-obtain

[ L NN ey e Ay

~ o— — *
€y =%y " J’{n[ gn(zn’ Xy T - C’n(zn’ X R

(5-7)

2o

+ ‘(Z)n(xn) - ‘(Zn(i_{n)]

PR

Note that Eq. (5-7) agrees with Eq. (5-4) since the identity

.

N | ( 72 = 3
- b ..l’n(Xn) - gn(zn, X, T)=0 4
has been added within the brackets. Hence, Eq. (5-7) may be written using 3

<

Eq. (3-4) as - e

- o
5 e, = X+ .%n[m;n -2, xn] (5-8) _
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The error covariance matrix of the estimate is Pn = (eh é:). It is easily
. shown by direct diiferentiation that each of the diagonal terms in Pn is

minimized by choosingJ{n to satisfy the Weiner Hopf eguation as

A g‘ ) ¥ o VN - . e .o ¥ T ¢

E §§ (Xn(Agn J’n Xn) V= -.)in<(Al_.n - fgn Xn) (A {’n .Q’n Xn) > ) (5-9)
- _

- ::‘E:f: -

? ; : An interesting derivation of the Wiener Hopf equation is given by Johnson

E i (Ref. 3). Equation (5-9) may be expanded and the definitions of the covari-

p .

3 %' : ance functions used to obtain

B g
: E-" T T - Iy’ T T F T1

S Ch *M, & _J[n[zn+"‘en Ca +Cngx; t &, Mn"(en’ (5-10)

It will now be shown that the m’n defined in Eq. (5-10) is exactly the same as

_E:" ’ the Kn specified in Eq. (5-5); i.e.,
‘ K =K
n n
. This is done by substituting Kn from Eq. (5-5) for;){n in Eq. (5-10). The

result of this substitution is

T

- [D+2 A z-1T w-«T 51 M2t + cT)

(5-11)
et a-3T1z+ceTr2cT + M2
It is easily shown, using Egs. (4-3), (4-4), (4-5), and (4-6), that Eq. (5-11)
is an identity. The proof is simplified by noting that corresponding terms
involving similar groupings of # and JZ’T must vanish identically. Hence it
has bcen shown that the weighted least squares estimate is identical with the
Jincar minimum variance estimate and that the simpler expression may be

used for the gain computation as

K =[cT+Mm 2T} [z + 2 cTirc 2 veom 2711 (512
n . n n n n n n n n n

A
.
>Q
‘“».‘;:»,
X
u T
ra
8
5 ;;‘
.
¥
:
£
%ﬂ
:
LR
i) f"
y
’i’.
A

B-9

o . e aam . . _
NPy T N T N T T Y S T . SV o P IR R T VL v/ T T o



L R T TS 5 g
L LB IR T T x i et st s censnetit e

a2

e e T

In the computation of Pn’ Eq. (5-8) is used as

i G R

PRI

Al

e, =X +K_o&1 (5-13)

o

where

Lo
At emans

N e - Rl ey o
]

(5-14)

Then

WO F v
4

P

-y S T
e Rn- = ((Xn + Kn Arn) _(Xn + Kn Arn) >

(5-15)
: . s T - T. T T Ty T
3 X XD K Ar X D+ X 8r > Ko+ K (Arar 2K

where

W T
. emaa P Y
¥

TR N Y
€

. 5 T
<Arn Xn> =<8 é’n - 'wn Xn) Xn>

gam e e n
TN anw
]

H

ST o o3 ST :
oy Xy -2 (X Xy (5-16)

et

. =-C -¥ M
E n n n

and

T, o 3 ¢ X T
<Arn Z.\rn> - <(A§n - "‘ln Xn) (Aén - ‘l)n Xn) > (5-17) X

- -2 +2 cYic @l e M 2T
‘f n n n n n n n

Equation (5-15) may be simplified by noting that the Wiener Hopf equation
(5-9) requires

pl,

K _arly =k car arhy (5-18) .
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Hence, P simplifies to

o s ~T ~'1:
P =X EI>+K (Ar X0

3 TN
Sopra o vy

T =M, -K [C +2 M] (5-19)

B = - L’ -
¢ {1 Kﬁ.zn] M -K C

Pn may also be computed using Eq. (5-15), which does not require that the
filter satisfy the Wiener Hopf equation. The result is

_ ] T Tq 7T
P =M_ Kn[Cni-.féth]—[Cn-PMnQ 1x; -
(5-20)

T T Ty T
[y [v;
+K [z +2 C_+ C 2 +% Mn.l?n] K.

B.6 Block 6 - Step Initialization

The quantities Gn’ Vo and Ln are computed in Block 6. These

e

quantities are required for the set up computations in Block 3.
The computation of these three covariance matrices requires com-

putation of the estimation error. This is obtained in Eq. (5-12) as

e, =X _+ Kn[Agn - £ xn] (6-1)

e e W08~ P, M i st 2

The use of Eq. (3-3) permits Eq. (6-1) to be written as

(5]
H]
oy
+
=
|
Z
+
N
>

~ ( P
n+é°nT-£nxn]

(6-2)

[I+KnJ€n-KnQn] Xn+Kn‘5nNn+Kné°nT

by © a3 .
Fan'i-Kn ann+Kn8nT (6-3)
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F EI+Kn.%’ -XK Z (6-4)

n n n n

Then G_ is obtained by using its definition and Eq. (3-5) as

- T.
Gz, N

A P~ T
({Fn X +K ifx’nNn-!-Kn 8n T)~Nn> (6-5)

an .. T T
FEX Nn> + Kn (gn <Nn Nn>

i

FW_+K_ % R (6-6)
n n n n
The matrix vV is obtained using Eqs. (6-3) and {3-2) as

- ~T
Vn = <en P

5

((Fn Xn + Kn Qn Nn + Kn é"n Tx) P

Fllb e, (+DF+U)ED (6-7)

~T - NNT
Fa ¢n<en-1 B+ Fn@(pp >

F ¢_V

n'n n-1 + ans
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The matrix L, is computed using Eqs. (6-3) and (3-7) as

2

'

» i

: _ ~T '
: Ln = <en T > }
» , . ;
={F X +K 9 N +K & T)TD i

(6-8) :

—Fn(XnT )+Kné°n(TT)

= Fn Yn + Kn é"n B :

B.7 Block 7 - Filter Performance z‘

s

The filter performance may be verified by computing the cost

z function given as Eq. (4-1) evaluated at Xn = S-{n and also at in' The
equations are
v's
S - - _ — AT _ i
- - 7 -
§ M T (g’n - 'en(Xn)) An(gn ‘en(xn)) (7-1) i
3 i
R !
3 and
/
: R, =t —I')A(‘))TA (g-;z(ic))+z(g-z(5<))TJ(§<-3'<)
; n °n n'n n \°n n'" ' n n n' " n n'“'n n
\ (7-2)
s (X -F)T D (R -%
n n n'"'n n ;
§
It is necessary to verify that 3
N, S A (7-3) .

in order to justify processing the measurements. In the event that this con-
dition is not satisfied, the basic real-world dynamics and measurement

models should be checked. The computer program should come to a halt

whenever Eq. (7-3) is not satisifed.
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